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ABSTRACT: The Global Ensemble Forecast System (GEFS) is upgraded to version 12, in which the legacy Global
Spectral Model (GSM) is replaced by a model with a new dynamical core}the Finite Volume Cubed-Sphere Dynamical
Core (FV3). Extensive tests were performed to determine the optimal model and ensemble configuration. The new GEFS
has cubed-sphere grids with a horizontal resolution of about 25 km and an increased ensemble size from 20 to 30. It extends
the forecast length from 16 to 35 days to support subseasonal forecasts. The stochastic total tendency perturbation (STTP)
scheme is replaced by two model uncertainty schemes: the stochastically perturbed physics tendencies (SPPT) scheme and
stochastic kinetic energy backscatter (SKEB) scheme. Forecast verification is performed on a period of more than two
years of retrospective runs. The results show that the upgraded GEFS outperforms the operational-at-the-time version by
all measures included in the GEFS verification package. The new system has a better ensemble error–spread relationship,
significantly improved skills in large-scale environment forecasts, precipitation probability forecasts over CONUS, tropical
cyclone track and intensity forecasts, and significantly reduced 2-m temperature biases over North America. GEFSv12 was
implemented on 23 September 2020.

KEYWORDS: Ensembles; Numerical weather prediction/forecasting; Operational forecasting

1. Introduction

Following the National Centers for Environmental Prediction
(NCEP)’s implementation plan, a unified community model was
developed acting as the foundation to align collaboration with
the U.S. modeling community and build the NCEP Environmen-
tal Modeling Center (EMC) unified modeling capabilities. The
GFDL Finite-Volume Cubed-Sphere (FV3) was chosen as the
dynamical core for the Next Generation Global Prediction Sys-
tem (NGGPS) in 2016. The first major NGGPS model package
was successfully implemented within the Global Forecast System
(GFS) and became operational on 12 June 2019 as the GFSv15.
The FV3-based model used in GFSv15 is the basis of the lower-
resolution medium-range ensemble forecast system}the Global
Ensemble Forecast System, version 12 (GEFSv12 hereafter).

One important strategy for the NCEP implementation is sim-
plifying the NCEP production suite, as the production suite com-
plexity and a large number of models are key factors that are
limiting its effectiveness and ability to improve. The wave model
(WAVEWATCH III; Tolman 2016) was integrated into FV3-
based GEFSv12 with one-way coupling to replace the Global
Wave Ensemble System. A second GEFS control member is
added to run the GEFS-aerosol forecast to replace the current

NEMS GFS Aerosol Component (NGAC; Wang et al. 2018).
GEFSv12 with the integrated WAVEWATCH III and NGAC
was implemented on 23 September 2020, as one operational sys-
tem after extensive evaluation.

The Global Spectral Model has been used in GEFS since
its first implementation in 1992 (Toth and Kalnay 1993). The
GEFS version 11 (GEFSv11, hereafter) was implemented on
2 December 2015 (Zhou et al. 2017), and it uses a semi-
Lagrangian Global Spectral Model (GSMv12.0.0). A tremen-
dous amount of testing and evaluation was performed to build
GEFSv12 to accomplish the big move from a legacy global
spectral model with a hydrostatic assumption to a nonhydro-
static FV3-based model.

An experimental extended forecast system of GEFS was
developed in 2018 with the support of the Subseasonal Exper-
iment (SubX) project (Pegion et al. 2019). This system is
based on the GEFSv11 configuration with upgrades to the
model stochastic scheme and a minor upgrade to the convec-
tion scheme (Zhu et al. 2017, 2018; Li et al. 2018). It runs
experimentally and provides once-a-week real-time forecasts
to support the Climate Prediction Center (CPC) week-3/4
outlooks. This experimental system serves as a benchmark for
the extended forecasts of GEFSv12.

GEFSv12 officially extends the weather forecast guidance
from 16 to 35 days, which allows the National Weather Service
(NWS) to deliver numerical weather predictions 3–4 weeks in
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advance. For the extended forecast system, reforecasts with a
long training dataset are highly desirable to remove systematic
errors in the prediction system (Hamill et al. 2006, 2008). The
implementation of GEFSv12 is accompanied by the creation of a
20-yr global reanalysis dataset from 2000 to 2019 and a 30-yr
reforecast dataset from 1989 to 2019, which were made available
to the public (Hamill et al. 2021; Guan et al. 2022). The 20-yr
reanalysis for the 2000–19 period was performed based on the
GFSv15 configuration except for a lower horizontal resolution
(Hamill et al. 2021). The 30-yr GEFS reforecasts are initialized
from the 20-yr reanalysis data from 2000 to 2019 and the Climate
Forecast System Reanalysis (CFSR; Saha et al. 2014) from 1989
to 1999. The reforecast uses the same model configuration as
GEFSv12 but differs in the ensemble size, forecast lead time and
the verification period. The verification of the 30-yr GEFSv12
reforecast was performed against the benchmark of GEFS
extended forecasts (GEFS SubX) and GEFSv10 reforecasts
(Hamill et al. 2013), which can be found in another paper (Guan
et al. 2022). Overall, GEFSv12 outperforms the GEFS SubX and
GEFSv10 in terms of the 500-hPa geopotential height, tropical
cyclone track, precipitation over CONUS, andMJO forecasts.

The focus of this study is to introduce the sensitivity tests that
we performed to determine the configuration of GEFSv12 and its
performance compared with the operational-at-the-time version
(GEFSv11) in more than 2-yr retrospective runs. The verification
metrics to evaluate the GEFSv12 are introduced in section 2. The
major upgrades in terms of the model dynamics, physics parame-
terization, and the ensemble configuration of GEFSv12 are intro-
duced in section 3. The sensitivity experiments performed during
the tuning and testing processes are discussed in section 4. The
overall performance of the 2-yr retrospective runs is discussed in
section 5. Section 6 is the summary and discussion.

2. Forecast verification metrics

The performance of ensemble forecasts is evaluated by
using the NCEP ensemble verification system and verified
against the corresponding analysis (Toth et al. 2003, 2006;
Zhu and Toth 2008; Zhou et al. 2016, 2017), after the forecast
and analysis fields are interpolated to a 2.58 3 2.58 latitude–
longitude grid. The verification metrics for general forecast
variables include the forecast bias and ensemble spread, the

TABLE 1. The upgrade summary of GEFSv12 compared to GEFSv11.

GEFSv11 SubX GEFSv12

Model GSM (hydrostatic) GSM (hydrostatic) FV3-based (nonhydrostatic)
IC uncertainty EnKF with TC relocation EnKF with TC relocation EnKF without TC relocation
Model uncertainty STTP SPPT 1 SKEB 1 SHUM SPPT 1 SKEB
Resolution TL574L64 (∼34 km), 0–8 days TL574L64 (∼34 km), 0–8 days C384L64 (∼25 km)

TL382L64 (∼52 km), 8–16 days TL382L64 (∼52 km), 8–35 days
Forecast days 16 days 35 days 16 days (0600, 1200, and 1800 UTC)

35 days (0000 UTC)
Ensemble size 20 members 20 members 30 members
Ocean forcing Persistent 1 relaxation SST NSST and two-tiered SST NSST and two-tiered SST
Microphysics Zhao–Carr MP Zhao–Carr MP GFDL MP

FIG. 1. Tropical cyclone track forecast errors for GEFSv11 (gray) and FV3-based GEFSv12
without (blue) and with (orange) tropical cyclone relocation over the Atlantic basin for the
period from 16 Aug 2017 to 30 Sep 2017.
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root-mean-square error (RMSE) and the pattern anomaly
correlation (PAC) for the ensemble mean, and also probabil-
ity forecast skill scores such as the continuous ranked proba-
bility score (CRPS), the continuous ranked probability skill
score (CRPSS), the Brier score (BS), the Brier skill score
(BSS) and the relative operating characteristic (ROC).

The verified fields include the geopotential height at 500
and 1000 hPa; wind fields at 10 m, 850 hPa, and 250 hPa; and
temperature at 2 m and 850 hPa in the Northern Hemisphere
(NH), the Southern Hemisphere (SH), and tropics. Our dis-
cussion mainly focuses on the 500-hPa geopotential height
field as it is the standard means for evaluating the large-scale
prediction skill of medium-range prediction models, except
for when special concerns or attention to other forecast varia-
bles are needed. A paired block bootstrap method is used for
the statistically significant test of the differences between two
forecasts (Hamill 1999). The set of two forecasts is repeatedly

randomly sampled to build the null distribution from which
2.5th and 97.5th percentiles are assessed to get the confidence
interval.

The verification includes the quantitative precipitation fore-
cast (QPF) over the contiguous United States (CONUS),
tropical cyclone track and intensity forecasts, and MJO pre-
diction skills. QPF and probabilistic QPF are verified against
the climatology-calibrated precipitation analysis (CCPA)
over CONUS. CCPA is generated with linear regression and
spatial and temporal downscaling techniques and combining
two widely used datasets: the NCEP CPC Unified Global
Daily Gauge Analysis and the higher temporal and spatial
resolution of the NCEP Stage IV multisensor quantitative
precipitation estimations (Hou et al. 2014). Precipitation is
categorized by the 24-h accumulated value with threshold
amounts greater than 1, 5, 10, and 20 mm. BSS indicates the
degree of improvement of BS of a forecast compared to the

FIG. 2. The zonal-mean ensemble spread of zonal winds in (a) GEFSv11, (c) GEFSv12, and (e) the spread differ-
ence between these two versions in the Northern Hemisphere winter season. (b),(d),(f) As in (a), (c), and (e), but for
the Northern Hemisphere summer season.
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climatology. The 10-yr mean of CCPA is used as the climatol-
ogy to calibrate the BS. As the GEFSv12 extends the ensem-
ble forecasts to a subseasonal time scale (35 days), the
forecast skill of MJO as the main prediction source at this
time scale is also compared with the GEFS SubX.

3. Major upgrades of GEFSv12

GSM in NCEP had been developed and used in GFS and
GEFS for over 30 years, but it remained a hydrostatic model
without having nonhydrostatic extension. FV3 was selected
from five nonhydrostatic candidate dynamical cores (Ji and
Toepfer 2016) to meet the end goal of the NGGPS program
for developing a single integrated model suitable for both
global and regional modeling with forecast length ranging
from weather to climate scales. GEFSv12 is the first FV3-

based version of the GEFS system. The GFDL FV3 team has
a detailed description of FV3 in their published papers (Lin
and Rood 1996, 1997; Lin 1997, 2004; Harris and Lin 2013;
Putman and Lin 2007; Harris et al. 2020a,b).

GEFSv11 became operational in 2015 with a horizontal res-
olution of TL574 (34 km) for the first eight days and TL384
(52 km) for the second eight days. There are 64 vertical levels
on sigma pressure hybrid layers. The initial conditions for the
20 ensemble members are generated from a GSI/EnKF
hybrid analysis perturbed with 6-h EnKF ensemble forecasts
(Zhou et al. 2016). The stochastic total tendency perturbation
(STTP) scheme is used to represent model uncertainties by
perturbing the total tendency of the model prognostic varia-
bles (surface pressure, temperature, wind, and humidity) with
an empirical formula (Hou et al. 2006, 2008).

FIG. 3. The (a) CRPSS and (b) ROC for 500-hPa geopotential height in the Northern Hemisphere. The curves with
different colors represent GEFSv11 (black) and GEFSv12 with 20 (red) and 30 (green) ensemble members.

FIG. 4. The BSS for precipitation probability forecasts over CONUS with the precipitation threshold of (a) .1 and
(b) .20 mm day21. The curves with different colors represent GEFSv11 (black) and GEFS v12 with 20 (red) and
30 (green) ensemble members.
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Table 1 lists the major upgrades of GEFSv12 from
GEFSv11, as well as the GEFS SubX. The GEFS SubX as an
experimental GEFS extended forecast system is similar to
GEFSv11 except with an extended forecast length and new
model stochastic schemes. The major GEFSv12 updates com-
pared with its previous version include the replacement of the
hydrostatic global spectral model (GSM v12) with the GFDL
FV3-based nonhydrostatic model. The GFDL cloud micro-
physics scheme with five predicted cloud species (cloud water,
cloud ice, rain, snow, and graupel; Zhou et al. 2019) replaces
the Zhao–Carr microphysics scheme with only the total cloud
water. In addition, the new GEFS was built on 25-km quasi-
uniform grids having six tiles globally, with each tile having
384 3 384 grid cells. In contrast to the GEFSv11, which has
two different horizontal resolutions with a higher resolution
the first 8 days and a lower resolution the last 8 days, the
GEFSv12 extended the forecast length from 16 to 35 days
with a uniform horizontal resolution (about 25 km) through
the entire model integration, and with an increase in ensem-
ble members to 30 from the original 20. For the model uncer-
tainty representation, the STTP scheme is replaced by a new
stochastic physics suite.

The physics package in GEFSv12 remains similar to the one
used in GFSv15. Compared to GEFSv11, there are some minor
updates to the deep- and shallow-convection schemes, the land
model, and the ozone photochemistry scheme, except for the
replacement of the microphysics parameterization (MP) scheme.
The simplified Arakawa–Schubert (SAS) shallow and deep con-
vection schemes (Han and Pan 2011) were updated with a scale-
aware parameterization (Han et al. 2017). The convection
scheme is also modified to reduce excessive cloud-top cooling, to
stabilize the model. Other physics updates also include revised
bare-soil evaporation to reduce a dry and warm bias, an updated

parameterization of ozone photochemistry with additional pro-
duction and loss terms (McCormack et al. 2006), and a new
parameterization of middle atmospheric water vapor photo-
chemistry (McCormack et al. 2008).

A near-surface sea temperature (NSST) model is used to
predict the vertical profile of sea temperature between the
surface and a reference level (about 5 m) by only considering
two physical processes: diurnal thermocline layer warming
and thermal skin layer (also known as sublayer) cooling. The
sea temperature at the reference level is also called the foun-
dation temperature in NSST. It is determined by using a two-
tiered method as in the SubX GEFS, in which the Real Time
Global (RTG) SST analysis with climatology tendencies con-
verges to the Climate Forecast System (CFS) bias-corrected
predictive SST in a 35-days’ time scale. This scheme allows
the surface temperature over the ocean to have diurnal vari-
ability and provides a more realistic thermal boundary condi-
tion for the atmosphere. Previous studies have shown that the
two-tiered scheme represents the variation of ocean tempera-
ture forcing better than that of the persistence method and
can result in improved MJO forecast skills (Zhu et al. 2019;
Li et al. 2018).

4. Sensitivity experiments

Similar to the development of other NCEP forecast sys-
tems, the process of GEFS development is iterative. The over-
all project is broken into many subcomponents that are
developed in parallel, by which GEFS developers have a
quickly developed version that is intentionally incomplete,
instead of a final version. The subcomponents of GEFS
include preprocessing to generate ensemble members, utilities
required for model postprocessing, model dynamics and phys-
ics schemes, and model uncertainty schemes. A group of

FIG. 5. The anomaly correlation for 500-hPa geopotential height in the (a) Northern Hemisphere and (b) Southern Hemisphere. The
black curves represent the GFS, and the red and green curves represent the FV3-based GEFS with the Zhao–Carr MP and the GFDL
MP. The lower graphs show the difference (curves) and significance test (bars). The difference is significant at the 95% confidence level
when the value is outside the bars.
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sensitivity experiments is usually performed corresponding to
each or several combined components. An appropriate mixed
strategy is chosen based on the review of a series of sensitivity
tests concerning program risks, performance, and computer
resource usage. Finally, the integrated version is constructed
based on the refined prototype. Two to three years of retro-
spective runs are performed and evaluated.

This development method means that the impact of each
component on the GEFS performance cannot be demon-
strated individually. The model used in the sensitivity experi-
ments performed at the early stage is usually not the final
version. In addition, sensitivity experiments only cover a short
time period due to limited computing resources. Nevertheless,
a clear comparison is made from sensitivity experiments with
and without the potential upgrade components. The major
sensitivity experiments that we performed in the testing
period are summarized as the following.

a. Initial condition uncertainties

As in GEFSv11, the control run in GEFSv12 uses the hybrid
GFS analysis as the initial conditions, while the ensemble mem-
bers utilize the analysis perturbed by the 6-h EnKF forecast
ensemble. In GEFSv11, tropical cyclones (TCs) in the ensemble
members are separated from the environment by applying
Kurihara’s method (Kurihara et al. 1993, 1995). TC perturba-
tions are calculated from the differences between ensemble
members and the ensemble mean after the separated TC

vortices are relocated to the observed locations (Liu et al. 2006;
Zhou et al. 2017). The TC perturbations are rescaled based on
tropical cyclone intensity and added to the analysis. The TC relo-
cation process results in the tropical cyclone structure being per-
turbed, while the initial TC locations in the ensemble members
are left intact. The impact of this TC relocation process is reeval-
uated for the GEFSv12. The sensitivity experiments, with and
without this preprocessing, for one hurricane season (2017) show
that there are no significant differences in terms of the ensemble
mean track forecasts at all forecast lead times (Fig. 1). The track
spread is slightly larger at the initial time without the TC reloca-
tion process, but it becomes almost identical after 24 h as the
forecast times increase (not shown). The TC relocation process
is not used in the new GEFS version due to the absence of any
significant advantage. Note that the track forecast errors in
GEFSv12 are generally smaller than those in GEFSv11, except
for day 7. The degradation at day 7 is not considered a critical
issue due to the small sample size. The exclusion of the TC relo-
cation process in GEFSv12 simplifies the initialization process
and reduces computational resources by about 10 min.

b. Model uncertainties

The STTP scheme was introduced in the GEFS in 2010. It
is used in GEFS v9 to v11 to represent model uncertainty
(Hou et al. 2006, 2008). This scheme adds stochastic forcing
every 6 h to the total tendencies of the model prognostic vari-
ables. The stochastic forcing is calculated from the differences

FIG. 6. Tropical cyclone intensity forecast error over the Atlantic basin with (a) HORD6 and (b) HORD5. (c),(d)
As in (a) and (b), but for intensity bias. The blue curve represents GEFSv11, and the red is GEFSv12. The range of
bars at (a) and (b) represents the 95% significance level.
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in the total tendency changes between each ensemble mem-
ber and the control after being multiplied by a random num-
ber and a rescaling factor as a function of location and lead
time. Note that STTP requires all members to integrate simul-
taneously and communicate every 6 h, which could reduce the
operational stability and reliability of GEFS.STTP is replaced
by a new stochastic physics (SP) suite with two schemes
in GEFSv12: stochastically perturbed physics tendencies
(SPPTs; Buizza et al. 1999; Palmer 1997, 2001) and stochastic
kinetic energy backscatter (SKEB; Berner et al. 2009; Shutts
2005). Unlike STTP, the new SP suite perturbs each ensemble
member independently. Both SPPT and SKEB use a random
pattern generator to generate spatially and temporally corre-
lated random patterns in spectral space with first-order

autoregressive [AR(1)] processes. These random patterns are
then transformed to a Gaussian grid and interpolated to the
model’s native cubed-sphere grid. The SPPT perturbations
applied to the physics tendencies are a sum of five different
patterns with varying scales and amplitudes. The five hori-
zontal length/time scales are 500 km/6 h, 1000 km/3 days,
2000 km/30 days, 2000 km/90 days, and 2000 km/1 year.
Energy dissipation from resolved scales to subgrid scales in
numerical weather prediction models occurs for numerical
and physical reasons. SKEB aims to inject back a fraction of
this to resolved scales. Kinetic energy dissipation from numer-
ical diffusion and interpolation is added back in the FV3-
based model. The kinetic energy loss of SKEB is calculated
in the dynamic core as a heat source that could optionally
be added to the temperature equation. SKEB uses this esti-
mate after applying multiple passes of a Laplacian smoother.
The horizontal length/time scales and the parameters that

FIG. 7. The transport of a rectangular wave with periodic bound-
ary conditions using the horizontal advection option (a) HORD5,
(b) HORD6, and (c) HORD8. The black curve is for the initial
time, while the blue and red curves represent the results after one
and two periodic cycle times, respectively.

FIG. 8. The RMSE (solid lines) and ensemble spread (dotted)
for 500-hPa geopotential height in the (a) NH and (b) SH. The
black curves represent GEFSv11, and the red ones represent
GEFSv12. The lower graphs show the RMSE difference and boot-
strap significance tests. The difference is significant at the 95% con-
fidence level when the bars do not overlap with the horizontal axis
through zero.
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control the perturbations pattern and amplitude of SKEB
and STTP were carefully tuned to achieve a better ensemble
spread–error relationship globally. In the early testing period,
several crashes occurred, and the diagnostics indicated that
the interaction of the PBL scheme and mountain blocking
scheme with SPPT led to model instability. A fix is applied to
SPPT with near-surface tampering below dividing stream-
lines, a parameter diagnosed in the gravity wave/mountain
blocking scheme based on orography and kinetic energy (Lott
and Miller 1997). This fix results in a slightly reduced ensem-
ble spread of 2-m temperature (not shown) but significantly
improved computational stability.

Early testing also indicates an increase in the global mean pre-
cipitation with SPPT. The bias comes from large increases in pre-
cipitation in areas of stratiform precipitation. Upon investigation,
we discovered that the inconsistency between the moist physics
tendencies that are perturbed and precipitation produced by the
parameterizations, which are not perturbed, is the cause of
the bias. The solution is to perturb the precipitation rate with the
same random pattern that perturbs the physics tendencies. This
removes the precipitation forecast bias and creates more physical
consistency in the water budget.

The stochastically perturbed humidity (SHUM) is another
component of the EMC stochastic physics suite. It is
employed in the EnKF short-range forecast of the opera-
tional GFS GDAS. The SHUM scheme perturbs the PBL
humidity, contributing to its importance in triggering con-
vection in the physics parameterizations. The zonal mean
ensemble spread from each SP component shows that
SHUM generates maximum spread over tropical regions,
similar to SPPT (Fig. 3 in Zhu et al. 2019). Both SHUM and
SPPT represent the model uncertainties related to convec-
tion. The sensitivity tests with and without SHUM show
that the exclusion of SHUM can relieve the overdispersion
issue of tropical low-level winds without a significant impact
on other winds (not shown). SHUM is not utilized in the
GEFSv12 ensemble forecasts.

The ensemble spread of zonal winds shows that the STTP
produces a large ensemble spread over extratropical regions
but a relatively small spread over the tropics (Fig. 2a). The
new SP suite produces an ensemble spread similar to STTP,
with a slight reduction in the winter hemisphere and an evi-
dent increase over the tropics. The contribution of SKEB
resembles that of STTP, accounting for large uncertainties
over baroclinic regions, while SPPT is responsible for the
increased spread over the tropics (Figs. 2c,f).

c. Ensemble size

Increasing the ensemble size is desirable in ensemble pre-
diction to improve the average skill and increase the reliabil-
ity of the estimate of the forecast probability distribution
(Buizza et al. 1999; Leutbecher 2018). However, it is always a
cost–benefit issue as the ensemble size is proportional to the
computational cost (Ma et al. 2012).

There were three ensemble members with two perturbed
members and one control run when the first NCEP GEFS
version became operational in December 1992. The ensemble

size of GEFS, the model horizontal and vertical resolution,
has increased gradually with the increase in computational
resources over the past decades. The ensemble size has remained
at 20 for the past 13 years since the GEFS version 8 was imple-
mented in July 2007, until it increased to 30 in the latest version
GEFSv12.

The benefits of increasing the number of ensemble mem-
bers from 20 to 30 were generally observed in all evaluation
metrics, but the degree of improvement varied depending on
the metric. For 500-hPa geopotential height, the changes in
the ensemble-mean forecasts to RMSE and PAC are very
minor (not shown), while there is a slight improvement in
CRPSS (Fig. 3a), as well as in BS and CRPS (not shown). Pre-
vious studies suggest that BS and CRPS of an M-member
ensemble decrease asymptotically as 1 1 M21 relates to the
score of an infinite-sized ensemble for perfect reliability

FIG. 9. The CRPSS for the 500-hPa geopotential height in the (a)
NH and (b) SH. The black curves represent GEFSv11, and the red
curves represent GEFSv12. The lower graphs show the CRPSS dif-
ferences and bootstrap significance tests. The difference is signifi-
cant at the 95% confidence level when the bars do not overlap with
the horizontal axis through zero.
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(Richardson 2001; Leutbecher 2018). According to this esti-
mation, the CRPS/BS in a perfectly reliable 20-member (30-
member) ensemble is 5% (3.3%) worse than the CRPS of an
ensemble with an infinite number of members. The limited
improvement in CRPS/BS is consistent with the estimates.

The improvement in the ROC score is evident with 30
ensemble members compared to 20 members (Fig. 3b). ROC
computes the hit rate (probability of detection) and false
alarm rate (probability of false detection) in each category.
Higher ROC scores mean a higher hit rate and lower false
alarm rate, indicating a better ability to distinguish between
the occurrence and nonoccurrence of an event. ROC repre-
sents the “potential skill” of probability forecasts as it is inde-
pendent of forecast bias. The increased ROC scores suggest
that the impact of the ensemble size increases from 20 to 30
on the potential skill is considerable.

For precipitation probability forecasts over CONUS, there
is an evident improvement in terms of BSS for precipitation
probability forecasts at all thresholds including 1 and 20 mm
(Fig. 4), as well as 5 and 10 mm (not shown). Leutbecher
(2018) studied the dependence of the quantile score on
ensemble size and suggested that for extreme probability lev-
els close to zero or close to one, the convergence of quantile
score with ensemble size is much slower than for the CRPS.
Our results are consistent with Leutbecher’s (2018) conclu-
sion. The precipitation forecasts as low-probability events
could benefit considerably from even a limited increase of
ensemble size from 20 to 30 members.

There is only a slight improvement in the ensemble-mean
forecast of TC tracks. The mean track error is reduced by
around 3% in the 7-day forecast. Limited improvement in the
ensemble-mean track forecast is likely due to the minimal
increase of ensemble spread of the TC track (not shown).
Adding more members does not improve the ensemble mean,

as the forecasts from ensemble members are just clones of the
same forecast.

d. GFDL cloud microphysics

GFDL MP is a single-moment cloud microphysics with five
prognostics cloud species: liquid, ice, snow, graupel, and rain
more based on the Lin–Lord–Krueger cloud microphysics
(Lin et al. 1983; Lord et al. 1984; Krueger et al. 1995) with
substantial development (Zhou et al. 2019). The Zhao–Carr
MP only has one prognostic cloud species: total cloud water.
The forecast performance with the GFDLMP and Zhao–Carr
MP is compared in the GEFSv12 configuration. The PAC
scores of 500-hPa geopotential height in both Northern and
Southern Hemispheres (NH and SH) are better at all lead
times with the GFDL MP than the Zhao–Carr MP (Fig. 5).
The improvement in the SH is more evident than in the NH.

FIG. 11. The time series of temperature bias over CONUS. The
black curves represent GEFSv11, and the red curves represent
GEFSv12.

FIG. 10. The time series of the seasonal mean CRPSS for 500-hPa geopotential height at 5- and 10-day forecast lead
times in the (a) NH and (b) SH. The black curves represent GEFSv11, and the red curves represent GEFSv12. The
solid lines represent 5-day forecasts while the dashed ones are 10-day forecasts.
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Interestingly, the new MP also significantly reduces the low-
level warm bias in this testing period, from March 2017 to
June 2017 (not shown). The TC track forecasts have mixed
results as the ensemble-mean track forecasts are generally

better over the Atlantic basin but slightly worse over the east-
ern Pacific, based on the TC forecasts for the 2016 and 2017
hurricane seasons (not shown).

e. Horizontal advection options

Weak biases of TC intensity are more evident in GEFSv12
than in GEFSv11 (Fig. 6), even though the former has a
higher horizontal resolution. Following a suggestion from
GFDL, the horizontal advection option (referred to as
HORD) was changed. This modification results in a reduced
TC intensity bias and ensemble-mean intensity forecast error
up to 4 days. A very slight degradation is observed in the
large-scale forecasts (not shown). It is considered acceptable
considering its benefit on the TC intensity forecasts.

In the FV3, subgrid reconstruction from the cell-interface
values of these variables is required to compute fluxes across
cell interfaces for FV3 advection schemes. PPM is used for
subgrid reconstruction following the formula (1.9) in Colella
and Woodward (1984) with fourth-order accuracy:

aj1 1=2( ) 5
7
12

aj 1 aj11( ) 2 1
12

aj12 1 aj21( ), (1)

Parameter aj is the cell-mean value of cell (j) and aj1 1=2( ) is
defined as the interface value at the right-side interface value

FIG. 13. BSS for the ensemble-mean precipitation greater than (a) 1, (b) 5, and (c) 10 mm day21 for the period from June 2017 to
November 2019. (d)–(f) As in (a)–(c), but for the reliability scores. The black curves represent GEFSv11, and the red curves represent
GEFSv12. The bar chart in the upper left of the reliability diagrams shows the number of times that each probability value was predicted.

FIG. 12. As in Fig. 8, but for 850-hPa zonal wind over tropics.
The black curves represent GEFSv11, and the red curves represent
GEFSv12. The difference is significant at the 95% confidence level
when the bars do not overlap with the horizontal axis through zero.
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of cell (j), as well as the left-side interface value of cell (j 1 1)
by continuity. Several methods are available to further modify
the interface value to prevent nonphysical oscillation. In an
“unlimited” scheme with a weak 2Dx filter (referred to as
HORD5), the following condition is evaluated to guarantee
that interface values on opposite sides of a cell are either
greater or less than the cell-mean value thus no new extrema
is created:

(
aj1 1=2( ) 2 aj

)(
aj2 1=2( ) 2 aj

)
, 0 , (2)

in which aj2 1=2( ) and aj1 1=2( ) are interface values at the left
and right side of the cell ( j) and aj is as in (1). Otherwise, a
first-order upwind flux is applied. Another method uses a
stronger 2Dx filter (referred to as HORD6):

3 aj2 1=2( ) 1 aj1 1=2( ) 2 2aj
∣∣∣

∣∣∣ , aj2 1=2( ) 2 aj1 1=2( )
∣∣∣

∣∣∣, (3)

which not only filters 2Dx signals but also limits the slope
steepness of reconstructed variables.

The monotonicity constraint is another well-known method
to keep an originally monotonic distribution monotonic after
advection. One monotonic option in FV3 is originally derived
by Colella and Woodward (1984) and optimized by Lin
(2004), with reduced numerical diffusion and improved com-
putational efficiency (referred to as HORD8). This method is
used in GEFSv12 for the tracer advection.

A finite-volume one-dimensional scalar differential scheme is
carried out to better understand the impact of advection options
on model performance. The transportation of a rectangular
wave and Gaussian wave with periodic boundary conditions and
mean flow from left to right is compared. There are no differ-
ences among these three approaches for the advection of a con-
tinuous scalar (not shown). The results from the advection of a

rectangular wave show that HORD8 is most diffusive, while
HORD5 is the least (Fig. 7). There are more evident overshoots
and undershoots in HORD5 than in HORD6 and no overshoots
in HORD8, due to strictly monotonic constraints. Less diffusivity
in HORD5 could be responsible for more intense hurricanes
than in HORD6. Overshoots at discontinuity regions such as the
areas with convective rainbands and TC eyewalls could favor
deep moist updrafts, thus leading to more intense TCs. Our
results are consistent with Gao et al.’s (2021) study. Their investi-
gation shows that hurricane intensity and structure are sensitive
with the horizontal tracer advection scheme. By comparing two
schemes, a monotonic scheme (HORD8) and HORD5 with
additional positive-definite constraints, they found that replacing
the tracer advection option HORD8 with HORD5 leads to
stronger storms.

Given that HORD5 is a less diffusive scheme, the kinetic
energy dissipation is larger than in HORD6. The parameter
that controls the amplitude of SKEB perturbations is reduced
around 1/3 when HORD6 is changed to HORD5 to avoid
overspread since SKEB perturbations are based on the esti-
mate of the kinetic energy dissipation.

5. Verification of GEFSv12 retrospective runs

After the configuration of GEFSv12 is determined based
on extensive testing and verification, retrospective runs for
more than 2 years are carried out to support the validation for
all GEFS stakeholders. The performance of the retrospective
runs is compared with that of the GEFSv11 for the forecasts
up to 16 days and the GEFS SubX for the extended forecasts.
With the limited computing resources, the retrospective runs
provided 30-member ensemble forecasts up to 16 days for
one year from December 2018 to November 2019, and up to
10-day forecasts for one year from June 2017 to November

FIG. 14. The averaged ensemble-mean error of the tropical cyclone track forecast (solid) and ensemble spread (dotted) for all cases over
the Atlantic, EP, and WNP basin in (a) 2017, (b) 2018, and (c) 2019. The black curves represent GEFSv11, and the red curves represent
GEFSv12.
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2018. All retrospective runs are initialized at 0000 UTC daily,
but the forecasts initialized at 1200 UTC are added during the
hurricane seasons of NH (July–October) to increase the sam-
ple size of tropical cyclone forecasts. To evaluate MJO fore-
cast skills, the retrospective runs initialized at 0000 UTC
extend to 35 days for the cases from May 2017 to April 2018
every 7 days. A comprehensive evaluation is performed, and
the major conclusions are summarized.

a. Grid-to-grid verification

The performance of GEFSv12 is significantly better overall
than GEFSv11 concerning the verification metrics included in
the GEFS verification package. The RMSE for 500-hPa geopo-
tential height in both the NH and SH is reduced significantly,
and there is a better spread–error relationship in GEFSv12 com-
pared with GEFSv11 (Fig. 8). The underdispersion is evident in
the NH in both GEFSv12 and GEFSv11, but the application of
the new stochastic physics suites results in a large spread at all
forecast lead times. The spread of GEFSv11 in the SH is under-
dispersive in the first week but overdispersive in the second
week. GEFSv12 has an increased ensemble spread at short lead
times but remains underdispersive at all lead times.

A metric that measures the improvement of the ensemble-
mean forecasts is the forecast lead time of skillful forecasts
with an anomaly correlation larger than 0.6 in terms of the
500-hPa geopotential height. By comparing the corresponding
anomaly correlation between GEFSv12 and GEFSv11, we
found that the skillful forecasts in GEFSv12 extend to 10 days
from the 9.7 days in GEFSv11 in the NH.

GEFSv12 outperforms GEFSv11 in the probability fore-
casts with improved CRPSS, ROC, and BSS in all forecast
lead times (only CRPSS shown in Fig. 9). Figure 10 shows the
time series of 3-month mean CRPSS for the 500-hPa geopo-
tential height in the NH and SH during the 2-yr retrospective
periods. The improved performance is consistent over time in
terms of the monthly averaged CRPSS.

The improvement in the forecasts of 850- and 250-hPa wind
fields in the NH is also evident for CRPSS (not shown). The skill-
ful forecasts with CRPSS greater than a threshold of 0.3 extended
about 0.5–0.6 days for the forecasts of winds at 850 and 250 hPa.

Large warm/cold biases of 2-m temperature over North
America (NA) in the warm/cold season have been noted in
the GEFSv11 (Zhou et al. 2017). These biases with seasonal
variations are substantially reduced in GEFSv12, especially in
the warm seasons (Fig. 11). The reduced warm bias is likely
associated with the replacement of the Zhao–Carr MP with
the GFDL MP, since a similar improvement was observed in
the corresponding sensitivity tests (not shown). The 2-m tem-
perature bias in winter is reduced, but a slight cold bias
remains in GEFSv12.

The forecasts of winds, temperature, and geopotential
height are significantly improved in the tropics (not shown),
as in the NH and SH. A notable change is the substantially
increased ensemble spread ascribed to the application of
SPPT. The large underdispersion in GEFSv11 is substantially
reduced, except where it becomes overdispersive in the
GEFSv12 in terms of low-level winds. Figure 12 shows that

the RMSE of 850-hPa zonal wind is reduced significantly, but
the ensemble spread is larger than RMSE in GEFSv12.

b. Precipitation

The precipitation forecasts are only verified over CONUS.
GEFSv12 generally outperforms GEFSv11 in terms of precip-
itation probability forecasts. The BS and reliability scores are
always better in GEFSv12 than in GEFSv11. The BS meas-
ures mean squared error in probability space. Figure 13 shows
that the BS of GEFSv12 is smaller at all lead times than those
of GEFSv11. Reliability diagrams provide information about
probability forecast bias. A reliability curve along the diago-
nal line represents no probability forecast bias. The compari-
son shows that the reliability curves of GEFSv12 are
generally closer to the diagonal line than those from

FIG. 15. The tropical cyclone track forecast error of the ensem-
ble-mean forecasts for the tropical cyclones over the (a) Atlantic
basin, (b) EP, and (c) WNP averaged from 2017 to 2019. The blue
is for GEFSv11, and the red is for GEFSv12. The bars represent
the difference is significant at the 95% confidence level.
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GEFSv11 for both high and low probability categories. The
probabilities are overestimated/underestimated as the reliabil-
ity curve is located at the right/left side of the diagonal line.
GEFSv12 has much more reliable ensemble forecasts than
GEFSv11.

c. Tropical cyclone track and intensity forecasts

The tropical cyclone forecasts over the Atlantic, eastern
Pacific (EP), and western North Pacific (WNP) were verified
by year and basin for the period of the retrospective runs. Fig-
ure 14 shows that the RMSE of tropical cyclone track fore-
casts is reduced each year. The ensemble spread of the
forecasted tracks is considerably underdispersive in GEFSv11
while it is much closer to the RMSE in the GEFSv12. It
means that GEFSv11 generally underestimates the uncertain-
ties of track forecasts while GEFSv12 has a much better
spread–error relationship. The improved spread–error relationship
is primarily due to the upgrade of the model stochastic schemes.
Note that the performance of tropical cyclone track forecasts in
GEFSv12 varies in the three basins. The track forecasts are
improved in the Atlantic and WNP but are slightly degraded over
the EP for days 3–7 (Fig. 15).

The intensity forecasts are significantly improved over all
basins (Fig. 16) as the tropical storms are more intense in the
new system than in the old version. The selection of the less
diffusive advection option (HORD5) contributes to more
intense TCs in GEFSv12.

d. MJO forecasts

The forecast skill of MJO, which is considered to be the
most important predictability source for the subseasonal time
scale in the tropics, was verified using the real-time multivari-
ate MJO (RMM1 and RMM2) of Wheeler and Hendon
(2004). GEFSv12 is compared against the experimental SubX
GEFS. The comparison shows that the skillful MJO predic-
tion with the Wheeler–Hendon MJO index . 0.6 extends for
2 days from the SubX GEFS to GEFSv12 for the 1 year from
2017 to 2018 (Fig. 17a). The improvement in MJO forecast
skill is primarily from the improved forecasts of the OLR
components (Fig. 17b), while the performance of zonal winds
at 200- and 850-hPa pressure levels (referred to as U200 and
U850) are similar in these two systems (Figs. 17c,d). Note that
we only have a very limited sample size for 35-day forecasts in
the retrospective runs due to the limitation of computational

FIG. 16. As in Fig. 15, but for tropical cyclone intensity forecast error.

FIG. 17. (a) The MJO prediction skill scores for GEFSv12 (red line) and SubX (black line). The contributions of
(b) OLR, (c) U200, and (d) U850 to the MJO prediction skill.
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resources. An objective verification of MJO forecast skills of
GEFSv12 should be obtained from the corresponding refore-
cast dataset.

6. Summary and discussion

The GEFS is upgraded to version 12 following the overall
modeling development strategy and implementation plan
developed by NOAA. Major upgrades from the GEFSv11
include 1) the switch from a GSM model to an FV3-based
model, 2) extending the forecast length from 16 days to
35 days to cover subseasonal time scale forecasts, 3) increas-
ing the horizontal resolution from 34 to 25 km, 4) increasing
the number of ensemble members from 20 to 30, 5) replacing
the Zhao–Carr MP scheme with the GFDL microphysics
scheme, and 6) using SKEB and SPPT as the model uncer-
tainty schemes to replace STTP.

The comparison between GEFSv12 and v11 is performed
based on more than 2 years of retrospective runs. The
upgraded GEFS presents significant improvement in many
aspects. GEFSv12 outperformed GEFSv11 in terms of the
forecasts of traditional forecast variables, rainfall, tropical
cyclone track, and intensity, as well as MJO. The improve-
ment also presents itself in different verification metrics,
including the ensemble mean forecast skill scores of RMSE
and PAC and probability skill scores such as BSS, CRPSS,
and ROC. QPF over the CONUS is much more reliable and
more skillful. SPPT and SKEB improve the error–spread rela-
tionship compared with STTP, especially in the tropics. Even
though the underdispersion of temperature and wind fields
are generally common in both versions beyond 7 days in the
NH, the spread of GEFSv12 increased slightly. The forecast
errors of tropical cyclone tracks are reduced over the WNP
and Atlantic but slightly increased over the EP. GEFS has a
long history of complaints from users that the ensemble fore-
casts of tropical cyclone tracks are too underdispersive.
GEFSv12 has evident improvement in the spread–error rela-
tionship in terms of tropical cyclone track forecasts. GEFSv12
also reduces the weak intensity bias of tropical cyclones and
has smaller intensity errors. In addition, the new system
reduces the 2-m temperature warm bias in warm seasons and
cold bias in cold seasons over North America.

Our study has focused on the performance evaluation for
the upgraded GEFS as an integrated system. It is impossible
to demonstrate the contribution of each upgraded component
to the overall improved forecast performance. However,
we can obtain some clues from the sensitivity experiments we
performed during the development period. For example, the
GFDL-MP scheme likely plays an important role in reducing
the 2-m temperature bias. SPPT efficiently increases the
ensemble spread of GEFS, especially over the tropics, which
is essential in increasing the spread of forecast tropical
cyclone tracks. The use of a less diffusive advection scheme
leads to generally more intense tropical cyclones, thus reduc-
ing tropical cyclone intensity forecast errors.

A long training dataset of reforecasts is highly desirable for
a subseasonal forecast system to remove systematic errors
and reshape the predicted probability distribution. A global

reanalysis dataset from 2000 to 2019 and a reforecast dataset
from 1990 to 2019 have been created and have been available
to the public. Nevertheless, the subseasonal forecasts in this
study are verified based on the 1-yr retrospective run without
the removal of systematic bias. A more comprehensive verifi-
cation of the MJO forecast skills with 20-yr reforecast data
will be presented in another paper.

Large-scale anomalies in the initial state with slowly vary-
ing processes such as upper-ocean heat content and sea ice
are the major sources of predictability at subseasonal time
scales. However, GEFSv12 is still an atmosphere-only system.
Two-tiered SSTs using calibrated CFS SST forecasts and a
persistent method for sea ice are used as the lower boundary
forcing for the atmosphere, which limits the predictability in
subseasonal time scales. A fully coupled model with FV3-
based atmospheric, ocean (GFDL Modular Ocean Model
MOM6), sea ice (CICE), and land (Noah land surface model)
components are being developed for implementation in the
next upgrade cycle (GEFSv13).

Acknowledgments. The authors thank the FV3 GFS
group, especially Fanglin Yang, Jongil Han, Ruiyu Sun,
Weizhong Zheng, Shrinivas Moorthi, Daryl Kleist, Rahul
Mahajan, Jack Kain, Jeffrey Whitaker, and Tom Hamill for
setting the model configuration. The authors also appreciate
the help from the GFDL FV3 group, especially Lucas
Harris, Linjiong Zhou, and Xi Chen. We also thank Cather-
ine Thomas and Xingren Wu for their careful EMC internal
review and Mary Hart for aiding the editorial review of the
manuscript.

REFERENCES

Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A
spectral stochastic kinetic energy backscatter scheme and its
impact on flow-dependent predictability in the ECMWF
Ensemble Prediction System. J. Atmos. Sci., 66, 603–626,
https://doi.org/10.1175/2008JAS2677.1.

Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic represen-
tation of model uncertainties in the ECMWF Ensemble Pre-
diction System. Quart. J. Roy. Meteor. Soc., 125, 2887–2908,
https://doi.org/10.1002/qj.49712556006.

Colella, P., and P. R. Woodward, 1984: The Piecewise Parabolic
Method (PPM) for gas-dynamical simulations. J. Comput.
Phys., 54, 174–201, https://doi.org/10.1016/0021-9991(84)90143-8.

Gao, K., L. Harris, L. Zhou, M. A. Bender, and M. J. Morin,
2021: On the sensitivity of hurricane intensity and structure
to horizontal tracer advection schemes in FV3. J. Atmos. Sci.,
78, 3007–3021, https://doi.org/10.1175/JAS-D-20-0331.1.

Guan, H., and Coauthors, 2022: GEFSv12 reforecast dataset for
supporting subseasonal and hydrometeorological applications.
Mon. Wea. Rev., 150, 647–665, https://doi.org/10.1175/MWR-
D-21-0245.1.

Hamill, T. M., 1999: Hypothesis tests for evaluation numerical pre-
cipitation forecasts. Wea. Forecasting, 14, 155–167, https://doi.
org/10.1175/1520-0434(1999)014,0155:HTFENP.2.0.CO;2.

}}, J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts, an
important dataset for improving weather predictions. Bull.

WEATHER AND FORECAS T ING VOLUME 371082

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/23/23 07:53 PM UTC

https://doi.org/10.1175/2008JAS2677.1
https://doi.org/10.1002/qj.49712556006
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1175/JAS-D-20-0331.1
https://doi.org/10.1175/MWR-D-21-0245.1
https://doi.org/10.1175/MWR-D-21-0245.1
https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2


Amer. Meteor. Soc., 87, 33–46, https://doi.org/10.1175/BAMS-
87-1-33.

}}, R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast
calibration using ECMWF and GFS ensemble reforecasts. Part
II: Precipitation. Mon. Wea. Rev., 136, 2620–2632, https://doi.
org/10.1175/2007MWR2411.1.

}}, G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J.
Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s sec-
ond-generation global medium-range ensemble reforecast
dataset. Bull. Amer. Meteor. Soc., 94, 1553–1565, https://doi.
org/10.1175/BAMS-D-12-00014.1.

}}, and Coauthors, 2021: The reanalysis for the Global Ensem-
ble Forecast System, version 12. Mon. Wea. Rev., 150, 59–79,
https://doi.org/10.1175/MWR-D-21-0023.1.

Han, J., and H.-L. Pan, 2011: Revision of convection and vertical
diffusion schemes in the NCEP Global Forecast System.
Wea. Forecasting, 26, 520–533, https://doi.org/10.1175/WAF-
D-10-05038.1.

}}, W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F.
Yang, 2017: Updates in the NCEP GFS cumulus convection
schemes with scale and aerosol awareness. Wea. Forecasting,
32, 2005–2017, https://doi.org/10.1175/WAF-D-17-0046.1.

Harris, L., and S. J. Lin, 2013: A two-way nested global-regional
dynamical core on the cubed-sphere grid. Mon. Wea. Rev.,
141, 283–306, https://doi.org/10.1175/MWR-D-11-00201.1.

}}, X. Chen, L. Zhou, and J.-H. Chen, 2020a: The nonhydro-
static solver of the GFDL finite-volume cubed-sphere dynam-
ical core. Tech. Memo. 2020-003, Geophysical Fluid Dynam-
ics Laboratory, 6 pp., https://repository.library.noaa.gov/view/
noaa/27489.

}}, and Coauthors, 2020b: GFDL SHiELD: A unified system for
weather-to-seasonal prediction. J. Adv. Model. Earth Syst., 12,
e2020MS002223, https://doi.org/10.1029/2020MS002223.

Hou, D., Z. Toth, and Y. Zhu, 2006: A stochastic parameteriza-
tion scheme within NCEP Global Ensemble Forecast System.
18th Conf. on Probability and Statistics in the Atmospheric
Sciences, Atlanta, GA, Amer. Meteor. Soc., 4.5, https://ams.
confex.com/ams/Annual2006/techprogram/paper_101401.htm.

}}, }}, }}, and W. Yang, 2008: Impact of a stochastic pertur-
bation scheme on NCEP Global Ensemble Forecast System.
19th Conf. on Probability and Statistics in the Atmospheric Sci-
ences, New Orleans, LA, Amer. Meteor. Soc., 1.1, https://ams.
confex.com/ams/88Annual/techprogram/paper_134165.htm.

}}, and Coauthors, 2014: Climatology-calibrated precipitation
analysis at fine scales: Statistical adjustment of stage IV
toward CPC gauge-based analysis. J. Hydrometeor., 15, 2542–
2557, https://doi.org/10.1175/JHM-D-11-0140.1.

Ji, M., and F. Toepfer, 2016: Dynamical core evaluation test
report for NOAA’s Next Generation Global Prediction Sys-
tem (NGGPS). NOAA IR ID 18653, 93 pp., https://doi.org/
10.25923/ztzy-qn82.

Krueger, S. K., Q. A. Fu, K. N. Liou, and H. N. S. Chin, 1995:
Improvements of an ice-phase microphysics parameterization
for use in numerical simulations of tropical convection.
J. Appl. Meteor., 34, 281–287, https://doi.org/10.1175/1520-
0450-34.1.281.

Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initializa-
tion scheme of hurricane models by vortex specification.
Mon. Wea. Rev., 121, 2030–2045, https://doi.org/10.1175/1520-
0493(1993)121,2030:AISOHM.2.0.CO;2.

}}, }}, R. E. Tuleya, and R. J. Ross, 1995: Improvements in
the GFDL hurricane prediction system. Mon. Wea. Rev., 123,

2791–2801, https://doi.org/10.1175/1520-0493(1995)123,2791:
IITGHP.2.0.CO;2.

Leutbecher, M., 2018: Ensemble size: How suboptimal is less than
infinity? Quart. J. Roy. Meteor. Soc., 145 (Suppl.), 107–128,
https://doi.org/10.1002/qj.3387.

Li, W., and Coauthors, 2018: Evaluating the MJO prediction skill
from different configurations of NCEP GEFS extended fore-
cast. Climate Dyn., 52, 4923–4936, https://doi.org/10.1007/
s00382-018-4423-9.

Lin, S.-J., 1997: A finite-volume integration method for computing
pressure gradient force in general vertical coordinates. Quart.
J. Roy. Meteor. Soc., 123, 1749–1762, https://doi.org/10.1002/
qj.49712354214.

}}, 2004: A “vertically Lagrangian” finite-volume dynamical core
for global models. Mon. Wea. Rev., 132, 2293–2307, https://doi.
org/10.1175/1520-0493(2004)132,2293:AVLFDC.2.0.CO;2.

}}, and R. B. Rood, 1996: Multidimensional flux-form Semi-
Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046–2070,
https://doi.org/10.1175/1520-0493(1996)124,2046:MFFSLT.2.0.CO;
2.

}}, and }}, 1997: An explicit flux-form semi-Langrangian
shallow-water model on the sphere. Quart. J. Roy. Meteor.
Soc., 123, 2477–2498, https://doi.org/10.1002/qj.49712354416.

Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameteriza-
tion of the snowfield in a cloud model. J. Climate Appl. Meteor.,
22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022,1065:
BPOTSF.2.0.CO;2.

Liu, Q., S. J. Lord, N. Surgi, Y. Zhu, R. Wobus, Z. Toth, and T.
Marchok, 2006: Hurricane relocation in global ensemble fore-
cast system. 27th Conf. on Hurricanes and Tropical Meteorol-
ogy, Monterey, CA, Amer. Meteor. Soc., P5.13, https://ams.
confex.com/ams/pdfpapers/108503.pdf.

Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of
a parameterized ice-phase microphysics in an axisymmetric,
nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41,
2836–2848, https://doi.org/10.1175/1520-0469(1984)041,2836:
ROAPIP.2.0.CO;2.

Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic
drag parametrization: Its formulation and testing. Quart. J.
Roy. Meteor. Soc., 123, 101–127, https://doi.org/10.1002/qj.
49712353704.

Ma, J., Y. Zhu, D. Wobus, and P. Wang, 2012: An effective con-
figuration of ensemble size and horizontal resolution for the
NCEP GEFS. Adv. Atmos. Sci., 29, 782–794, https://doi.org/
10.1007/s00376-012-1249-y.

McCormack, J. P., S. D. Eckermann, D. E. Siskind, and T. J.
McGee, 2006: CHEM2D-OPP: A new linearized gas-phase
ozone photochemistry parameterization for high-altitude
NWP and climate models. Atmos. Chem. Phys., 6, 4943–4972,
https://doi.org/10.5194/acp-6-4943-2006.

}}, K. W. Hoppel, and D. E. Siskind, 2008: Parameterization of
middle atmospheric water vapor photochemistry for high-alti-
tude NWP and data assimilation. Atmos. Chem. Phys., 8,
7519–7532, https://doi.org/10.5194/acp-8-7519-2008.

Palmer, T. N., 1997: On parametrizing scales that are only some-
what smaller than the smallest resolved scales, with applica-
tion to convection and orography. Workshop on New Insights
and Approaches to Convective Parameterization, Reading,
United Kingdom, ECMWF, 328–337, https://www.ecmwf.int/
node/11493.

}}, 2001: A nonlinear dynamical perspective on model error: A
proposal for non-local stochastic-dynamic parameterization in
weather and climate prediction models. Quart. J. Roy.

O P S NO T E S 1083JUNE 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/23/23 07:53 PM UTC

https://doi.org/10.1175/BAMS-87-1-33
https://doi.org/10.1175/BAMS-87-1-33
https://doi.org/10.1175/2007MWR2411.1
https://doi.org/10.1175/2007MWR2411.1
https://doi.org/10.1175/BAMS-D-12-00014.1
https://doi.org/10.1175/BAMS-D-12-00014.1
https://doi.org/10.1175/MWR-D-21-0023.1
https://doi.org/10.1175/WAF-D-10-05038.1
https://doi.org/10.1175/WAF-D-10-05038.1
https://doi.org/10.1175/WAF-D-17-0046.1
https://doi.org/10.1175/MWR-D-11-00201.1
https://repository.library.noaa.gov/view/noaa/27489
https://repository.library.noaa.gov/view/noaa/27489
https://doi.org/10.1029/2020MS002223
https://ams.confex.com/ams/Annual2006/techprogram/paper_101401.htm
https://ams.confex.com/ams/Annual2006/techprogram/paper_101401.htm
https://ams.confex.com/ams/88Annual/techprogram/paper_134165.htm
https://ams.confex.com/ams/88Annual/techprogram/paper_134165.htm
https://doi.org/10.1175/JHM-D-11-0140.1
https://doi.org/10.25923/ztzy-qn82
https://doi.org/10.25923/ztzy-qn82
https://doi.org/10.1175/1520-0450-34.1.281
https://doi.org/10.1175/1520-0450-34.1.281
https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2
https://doi.org/10.1002/qj.3387
https://doi.org/10.1007/s00382-018-4423-9
https://doi.org/10.1007/s00382-018-4423-9
https://doi.org/10.1002/qj.49712354214
https://doi.org/10.1002/qj.49712354214
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2
https://doi.org/10.1002/qj.49712354416
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://ams.confex.com/ams/pdfpapers/108503.pdf
https://ams.confex.com/ams/pdfpapers/108503.pdf
https://doi.org/10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2
https://doi.org/10.1002/qj.49712353704
https://doi.org/10.1002/qj.49712353704
https://doi.org/10.1007/s00376-012-1249-y
https://doi.org/10.1007/s00376-012-1249-y
https://doi.org/10.5194/acp-6-4943-2006
https://doi.org/10.5194/acp-8-7519-2008
https://www.ecmwf.int/node/11493
https://www.ecmwf.int/node/11493


Meteor. Soc., 127, 279–304, https://doi.org/10.1002/qj.49712
757202.

Pegion, K., and Coauthors, 2019: The Subseasonal Experiment
(SubX): A multi-model subseasonal prediction experiment.
Bull. Amer. Meteor. Soc., 100, 2043–2060, https://doi.org/10.
1175/BAMS-D-18-0270.1.

Putman, M., and S.-J. Lin, 2007: Finite-volume transport on vari-
ous cubed-sphere grids. J. Comput. Phys., 227, 55–78, https://
doi.org/10.1016/j.jcp.2007.07.022.

Richardson, D. S., 2001: Measures of skill and value of ensemble
prediction systems, their interrelationship and the effect of
ensemble size. Quart. J. Roy. Meteor. Soc., 127, 2473–2489,
https://doi.org/10.1002/qj.49712757715.

Saha, S., and Coauthors, 2014: The NCEP climate forecast system
version 2. J. Climate, 27, 2185–2208, https://doi.org/10.1175/
JCLI-D-12-00823.1.

Shutts, G., 2005: A kinetic energy backscatter algorithm for use in
ensemble prediction systems. Quart. J. Roy. Meteor. Soc.,
131, 3079–3102, https://doi.org/10.1256/qj.04.106.

Tolman, H. L., 2016: User manual and system documentation of
WAVEWATCH III version 5.16. NOAA/NWS/NCEP/
MMAB Tech. Note 329, 361 pp., https://polar.ncep.noaa.gov/
waves/wavewatch/manual.v5.16.pdf.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC:
The generation of perturbations. Bull. Amer. Meteor. Soc.,
74, 2317–2330, https://doi.org/10.1175/1520-0477(1993)074,2317:
EFANTG.2.0.CO;2.

}}, O. Talagrand, G. Candille, and Y. Zhu, 2003: Probability
and ensemble forecasts. Forecast Verification: A Practitioner’s
Guide in Atmospheric Science, I. T. Jolliffe and D. B. Ste-
phenson, Eds., John Wiley and Sons, 137–163.

}}, }}, and Y. Zhu, 2006: The attributes of forecast systems.
Predictability of Weather and Climate, T. N. Palmer and R.
Hagedorn, Eds., Cambridge University Press, 584–595.

Wang, J., and Coauthors, 2018: The implementation of NEMS
GFS Aerosol Component (NGAC) Version 2.0 for global
multispecies forecasting at NOAA/NCEP – Part 1: Model

descriptions. Geosci. Model Dev., 11, 2315–2332, https://doi.
org/10.5194/gmd-11-2315-2018.

Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time
multivariate MJO index: Development of an index for monitor-
ing and prediction. Mon. Wea. Rev., 132, 1917–1932, https://doi.
org/10.1175/1520-0493(2004)132,1917:AARMMI.2.0.CO;2.

Zhou, L., S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L.
Rees, 2019: Toward convective-scale prediction within the
Next Generation Global Prediction System. Bull. Amer.
Meteor. Soc., 100, 1225–1243, https://doi.org/10.1175/BAMS-
D-17-0246.1.

Zhou, X., Y. Zhu, D. Hou, and D. Kleist, 2016: Comparison of
the ensemble transform and the ensemble Kalman filter in
the NCEP Global Ensemble Forecast System. Wea. Forecast-
ing, 31, 2057–2074, https://doi.org/10.1175/WAF-D-16-0109.1.

}}, }}, }}, Y. Luo, J. Peng, and D. Wobus, 2017: Perfor-
mance of the new NCEP Global Ensemble Forecast System
in a parallel experiment. Wea. Forecasting, 32, 1989–2004,
https://doi.org/10.1175/WAF-D-17-0023.1.

Zhu, Y., and Z. Toth, 2008: Ensemble-based probabilistic forecast
verification. 19th Conf. on Probability and Statistics in the
Atmospheric Sciences, New Orleans, LA, Amer. Meteor.
Soc., 2.2, https://ams.confex.com/ams/88Annual/webprogram/
Paper131645.html.

}}, X. Zhou, M. Peña, W. Li, C. Melhauser, and D. Hou, 2017:
Impact of sea surface temperature forcing on weeks 3 and 4
forecast skill in the NCEP Global Ensemble Forecasting Sys-
tem. Wea. Forecasting, 32, 2159–2174, https://doi.org/10.1175/
WAF-D-17-0093.1.

}}, and Coauthors, 2018: Toward the improvement of subseaso-
nal prediction in the National Centers for the Environmental
Prediction Global Ensemble Forecast System. J. Geophys. Res.
Atmos., 123, 6732–6745, https://doi.org/10.1029/2018JD028506.

}}, W. Li, X. Zhou, and D. Hou, 2019: Stochastic representa-
tion of NCEP GEFS to improve sub-seasonal forecast. Cur-
rent Trends in the Representation of Physical Processes in
Weather and Climate Models, D. A. Randall et al., Eds.,
Springer, 317–328.

WEATHER AND FORECAS T ING VOLUME 371084

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/23/23 07:53 PM UTC

https://doi.org/10.1002/qj.49712757202
https://doi.org/10.1002/qj.49712757202
https://doi.org/10.1175/BAMS-D-18-0270.1
https://doi.org/10.1175/BAMS-D-18-0270.1
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.1002/qj.49712757715
https://doi.org/10.1175/JCLI-D-12-00823.1
https://doi.org/10.1175/JCLI-D-12-00823.1
https://doi.org/10.1256/qj.04.106
https://polar.ncep.noaa.gov/waves/wavewatch/manual.v5.16.pdf
https://polar.ncep.noaa.gov/waves/wavewatch/manual.v5.16.pdf
https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
https://doi.org/10.5194/gmd-11-2315-2018
https://doi.org/10.5194/gmd-11-2315-2018
https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
https://doi.org/10.1175/BAMS-D-17-0246.1
https://doi.org/10.1175/BAMS-D-17-0246.1
https://doi.org/10.1175/WAF-D-16-0109.1
https://doi.org/10.1175/WAF-D-17-0023.1
https://ams.confex.com/ams/88Annual/webprogram/Paper131645.html
https://ams.confex.com/ams/88Annual/webprogram/Paper131645.html
https://doi.org/10.1175/WAF-D-17-0093.1
https://doi.org/10.1175/WAF-D-17-0093.1
https://doi.org/10.1029/2018JD028506

